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J. Phys: Condens. &tier 4 (1992) 2937-2959. P”md in the UK 

Ordering due to disorder in a triangular Heisenberg 
antiferromagnet with exchange anistropy 

Qing Sheng and Christopher L Henley 
Department of Physin, ComeU University, Ithaca, NY 14853, USA 

Abs(net We discuss the effeets of thermal flwluations, quantum fluctuations and 
quenched fluctuations on a uiangular lsing-Heisenberg antiferromagnet. Although ther- 
mal fluctuations of the quadratic order (in spinwave expansions) are found lo p r e s e r v e  
the mntinuous groundslate degeneracy, higherader spin-wave calculations show lhal 
thermal fluctuations lift the ground-state degeneracy. Long-wavelength thermal f ludu-  
ations are found lo be dominant in the thermal selection. ’Ihemal fluctuations and 
quantum fluctuations select stales with different spin directions within the ground-state 
manifold. We mnjectule that this “petition leads lo a f imtader  phase uansition. 
Due lo the symmetly-breaking fields introduced bj‘ the themallquantum fluctuations, 
we expect there to be another Kosterlilz-Thouless (KT) phase transition (T,) below 
which the system is locked inlo one of the discretely selected states, in addition to the 
WO k x  transitions (TN, and TN,) found lrj Miyashila and Kawamura. Random site 
dilutions affect the system the way the discrete random anisorrow field aEecls an XY 
ferromagnet. WO KT transitions (TN, and Ts) ale deslmyed as leal phase transitions 
at the appearance of the random site dilutions, but T N ~  is unaffected. 

1. Jntduction 

Frustrations in vector-spin systems often lead to non-trivial continuous degeneracy 
in the ground states: non-frivial in that the Hamiltonian of the system does not 
bear the Same symmetries as the ground-state spin configurations. Because of this, 
the non-trivial degeneracy of the ground states does not usually persist when we 
consider perturbations that involve higher states, such as (i) non-zero temperatures, 
(ii) quantum zero-pint fluctuations or (E) quenched randomness. 

At 6nite temperatures, the macroscopically stable submanifold of the ground state 
manifold is the one with the higher density of excited states, because its larger en- 
tropy reduces the free energy. This is the thermal selection effect. Secondly, since 
quantum-spin components do not commute, the classical ground-state spin config- 
urations are subject to the selection of quantum fluctuations. Thirdly, quenched 
fluctuations (random sitebond dilutions) reduce the non-trivial continuous degener- 
acy to discrete degeneracies; in addition to a selection effect, quenched fluctuations 
usually introduce random exchange fields into the system which may or may not de- 
stroy the selected order depending on models [2-4]. All these effects are due to the 
fluctuations, and are thus called ordering due Io disorder [S, 61. Usually it is the case 
that quantum and thermal fluctuations select the same subset of the ground statest, 
while quenched fluctuations tend to select a different subset [6, 2, 31. 

t Competing quantum and thermal selections were found in another system p] where the selection is 
Gum a mntinuous manifold of wavevecloIs, instead of spin directions. 
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It is the behaviour of the system at the low-temperature limit that we are inter- 
ested in, since the fluctuations at low temperature determine which subsets of the 
ground states are stabilized (thus selected). Since low-temperature expansions are 
used in this approach, the results are, strictly speaking, mlid only for T < J (where 
J is the energy scale of the interactions in the system). However, they guide us to the 
correct symmetry for labelling the states of the low-temperature phases. This suggesls 
the universality class of the transitions between these phases and less-ordered ones at 
higher temperature. Furthermore, the low-temperature expansions suggest how the 
coefficients of the coarse-grained degrees of freedom in the free energy depend on 
parameters, such as the temperature T or the dilution 6p. 

In this paper, we study the anisotropic Heisenberg model of m (antiferromagnets 
on the triangular lattice) 

+ (sin Bi sin B j  sin 4j sin 4j + cos Bi cos 0,) (1) 

where (. . .) means summing over all the nearest-neighbour pairs, {f3i ,4i}  are the 
polar angles of spin i, and 

J , =  A J J S ~  A > 1 
J ,  = J ,  = J/S2. 

The symmetry of the Hamiltonian (1) is Z, x S,, S, being the global rotational 
symmetry about the easy axis, the z-axis. The only continuous symmetry in the 
Hamiltonian is the trivial global rotation symmeby about the z-axis, but the ground 
states are found to have an additional continuous degeneracy [l]. 

Our interest in this system is that, unlike the previously studied frustrated vector- 
spin systems, the lirst-order thermal selection term is still zero. Since the ground- 
state degeneracy of the m Ising-Heisenberg model is not the real symmetry of the 
Hamiltonian, we still expect the degeneracy to be lifted by fluctuations in a proper 
higher-order calculation. The aim of this paper is to compute aU three kinds of 
selections (previously mentioned) and to use the information on the symmetry of the 
selected states to suggest the phase diagram as a function of four parameters: spin 
quantum number S, temperature T, anisotropy A and dilution Sp.  

In the limit A = 1, this model becomes the isotropic m Heisenberg model 
which has an order parameter space of SO(3) = Ps [I, 81. In the AFT Ising- 
Heisenberg model, if we stretch the usual notion of order parameter space so as to 
label the degenerate classical ground states, the order parameter space is S, x S, (see 
section 21). So the order parameter space of the m king-Heisenberg model has a 
different topology from that of the m isotropic Heisenberg model. Also, the ground- 
state degeneracy of the isotropic model is the true symmetty of its Hamiltonian, 
so the degeneracy stiU exists when fluctuations are included. In contrast, the real 
symmetry of the anisotropic model is only Z, x S,, so the degeneracy will be lifted 
by fluctuations. 

Since the parameter spaces of the two models have different topologies, the or- 
dering processes at low-temperature regions are expected to be different. In the 
isotropic AFT Heisenberg model, the phase transition has been characterized by 
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binding-unbinding of Z,-vortex pairs similar to the Kosterlitz-Thouless (KT) type 
phase transition [SI; and the spin correlation function decays exponentially at any fi- 
nite temperature ([SI and references therein). However in the AFT king-Heisenberg 
model, the ordering process is more sophisticated. From simulations of this model, 
Miyashita and Kawamura [I] inferred that there exist huo phase transitions in the 
temperature region of their Monte Carlo simulations: they identify the first transition 
(TN1) as the ordering of components of spins along the easy axis, and the second 
transition (TN2) as a m-like ordering of the components perpendicular to the easy 
axis. (This successive ordering process has been obsewed experimentally in a variety 
of two- and three-dimensional Ising-Heisenberg AFT, such as CsNiX,(X=CI, Br) 191, 
LiNiO, [lo].) A they kept lowering the temperature below the second transition 
point, they observed the recovery of the non-trivial symmetry. This seemed consistent 
with their analytical result that this system does not show any symmetry-breaking at 
the order of harmonic spin-wave excitations. However, since the Hamiltonian has 
the discrete Z, symmetry, we expect that the continuous degeneracy of the classical 
ground states will be lifted by fluctuations. 

The outline of this paper is as follows: Following [I] section 2 sets up the ground- 
state manifold and the expansion in linearized modes which is used in the rest of 
the paper. Section 3 shows that thermal fluctuation selection does indeed appear at 
higher orders of spin-wave excitations; since the naive second-order term is divergent, 
this necessitates a self-consistent cutoff. In section 4, we show that the quantum 
fluctuations also lift the ground-state degeneracies. The quantum fluctuations select 
different discrete sets of the ground states from the cnes selected by thermal fluc- 
tuations. In section 5, we show that the random site dilutions introduce a random 
uniaxial anisotropy field into the system, which does not select any particular discrete 
subsets in the ground-state manifold. In section 6, all the competing terms are com- 
bined in a free energy which is used to suggest the form of the phase diagram as 
a function of S, T, A and 6p. Among other things, we h d  that the pure system 
ought to have an additional transition not mentioned by Miyashita and Kawamura 
(section 6.1); and that in the diluted system, one transition (of KT type) is not de- 
stroyed even though it occurs in a background of other degrees of freedom whose 
transition is destroyed by random-field-like effects (section 6.2). We summarize the 
results in section 7. 

2. Ground state and harmonic excitations 

21. Non-m'viai degeneracy in ground-state manfoLd 
In the ground state the triangular lattice breaks up into three sublattices; within each 
sublattice, the spins are ordered ferromagnetically and can be described by two polar 
angles {q5a,0s} (s = 1, 2, 3 sublattice). For the case of A < 1, the spins are all 
in the yz plane and form a '120" structure' (the spins on three sublattices form 
120° angles with each other), in which case the ground state has only the trivial 
degeneracy associated with the global rotation and reflection of the 120' structure. 
For the m e  of A > 1, the z-axis becomes an easy mk. If we had an antiferromagnet 
on a bipartite lattice (no frustration), the ground state for A > 1 would have only 
discrete symmetry-spins on two sublattices (aligned in opposite directions) lie along 
the z-axis. However, for the triangular lattice, the inherent frustration makes it 
impossible for all the nearest-neighbour spins to align in opposite directions. The 
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partial resolution of the frustration is that the spins on the three sublattices tie in a 
plane including the easy axis (x-axis). Surprisingly spins can tie in any direction in 
the plane as long as the directions of the spins in the three. sublattices satisfy certain 
relations, as has been noted hy Miyashita and Kawamura [I]. 

Without h e  of generality, we m u m e  spins lie in the xy plane, Le. 8, = O2 = 
6, = m/2. We obtain +,,c& and 4, by solving the equations 

Q Sheng and C L Henley 

where i = 1,2 or 3, 

cos $,(sin q5z + sin &) = Asin q51(co~ & + COS b3) I cos +3(sin + sin ~ 5 ~ )  = A sin 43(cos 4, + cos &). 

There exists Z6 symmetry in the solutions to these equations: if v ,  = {C1,C2,C3} is 
a set of solution, then 

cos +Z(sin 4, + sin &) = A sin &(cos +3 + cos 4 ] )  (4) 

2r2 = {CZ,C3rC1} 

u3 = {<3> C1 7 CZ} 

v4 = ir - < I t n  - < 2 t T  - 531 

v5 = { n - C Z 7 n -  C 3 r P  - C l )  

v6 = {. - (37 - c1, - C2} 

cos cos & + Asin 4, sin & = -A/(A + 1) 
~ o s ( b ~ c o s $ ~ + A s i n ~ ~ s i i " + ~  = -A/ (A+ 1) { c ~ s ~ ~ c o s ~ ~ f  A ~ i n ~ ~ s i n ~ ]  = - A / ( A f  1). 

are equivalent sets of the solutions. 
It can be shown that equations (4) lead to the following equalities: 

Combining the first and second equations in (6), we get 

COS $ z ( ~ ~ ~  $1 - COS $3) (7) 

on the other hand, the second equation in (4) gives 

sin q52 sin + sin +3 

cos & 
-- - 

A(cos 4, +cos 43) ' 

Substituting equation (8) into (7), we get the identity 
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Therefore the three equations in (4) (or (6)) are not independent of each other. 
There is a continuous set of solutions to the equations parameterized by &: 

I 
where c $ ~  E [0, A/(A + I)), and the other solutions are related to 
(10) by the six-fold symmetry (5). So the ground state has a non-trivial continuous 
degeneracy S, (parameterized by 4,). On the other hand, the ground state has a 
trivial continuous degeneraq associated with global rotation of the spins about the 
easy axis. Therefore the ground state has S, x S I  symmetry, and the groundstate 
energy b 

(10) 
) 
) 

A 
+2 = arctan(A t an  4,)  + arccos - 

(1 + ~)Jcos24 ,  + ~ 2 s i n 2 4 ~  

( (1 + A)\/cosZ + A2 sin’ 4, 
A 

( 
r$3 = arctan(A t au  4,)  - arccos - 

(cos q$, 

E o / J  = -(A2 + A + l ) / ( A  + 1). (11) 

Alternatively, the non-trivial degeneracy can be parameterized in a more symmetric 
way by the parameter $ defined by 

G = (41 + 4 2  + 43)/3.  (12) 

Then -, $ + n/3 or $ -+ -$ is a symmetry operation. There are two special 
b d s  of states (figure 1): 

type I, the spins on one of the sublattices lie along the easy axis in which case 
$ E {0 ,*~/3 ,3~:2~/3 ,?r};  

tYpe 11, the spins on one of the sublattices lie perpendicular to the easy axis (we 
call these b e  spins: in the limit of A --* 00 the system does not care very much 
about which direction these spins point); in this case $ E {&x/6,*n/2,f5~/6}. 

22 Etpansion in hnmzonic mirations 

At finite temperatures, the spin configurations { g i ,  Ji} will deviate randomly from the 
ground-state configurations due to thermal fluctuations. Express the spin deviations 
from the groundstate configuration { Bi , 4i} as { SOi = gi - Bi , 64b; = q5i - &}. Then 
the Hamiltonian (1) can be expanded in a power series of the spin deviations as 

H = Eo+ H 2 +  H3f H4+... (13) 

where H ,  denotes the nth order in the expansion. Since we are expanding about 
the ground state, the linear terms should vanish. In reciprocal space, 

where the repeated indices are summed over (we will keep this convention in the rest 
of the paper), BZ is the €irst Brillouin zone of the triangular lattice with an edge of 
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F@rt L n e  ground states parametlized ty 11. ?be spins are in the ’disloned 1 2 0 O ’  
structum, where the spins are tent m r d s  the asy axis “pared with the isOMpic 120‘ 
stmcture. ’The ‘chid’ order parameter n (defined in section 6) is pointing perpendicular 
out of the plane of the paper. Slates on broken (full) lines are relaled to each other by 
the 2s symmetty. ?he stales on the broken Gnes are type I, and the States on lhe full 
lines are type 11. 

length 6, and EJq) are B , ( q )  or $,(q) (s=1, 2, 3 sublattices). The derivative in 
the reciprocal space is related to that in the real space by 

where the sum is over all the spins on sublattice s. Also 

6[ 8 4  ( ) - - c e-i9’r; 6Ci. 
i e s  

The quadratic term in the expansion of the Hamiltonian is 
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where A( q )  and B( q )  are 3 x 3 matrices, 

All  AlZE* ,4136; 
A,, A23Eq 

A31Eq A32E; 

with 

' A,, = Bll = -$[sin +,(sin & + sin +3) + A cos q51(cos 4, + cos &)] 
A,, = B,, = -$[sin &(sin c $ ~  + sin &) + A cos &(cos 43 + cos &)] 
A, = B33 = -%[sin q53(sin 41 + sin +z) + Acos  +3(cos d1 + cos 

AZ3= A,,= ~ ( c o ~ ~ ~ c o s ~ ~ + A s i n ~ ~ s i n ~ ~ )  = -A/[Z(A+ l)] 
A 3 1 = A , 3 = ~ ( c o s ~ 3 c o s ~ 1 + A s i n ~ 3 s i n ~ 1 ) = - A / [ 2 ( A + 1 ) ]  

A,,  = A,, = ;(cos cos 4, + Asin +l sin c&) = -A/[Z(A + I)] (20) 

B - B  - B  - B  - B  - B  - 1  12 - 21 - 23 - 32 - 31 - 13 - 2 

and 

cq = expI-iq,I + exp[i(q, + G , ) / z I  + exp[i(q, - 8 q g ) / 2 I .  (21) 

It should be noted that due to the continuous degeneracy SI x SI of the ground state, 
there are two zero modes [ll]: 

(22) 
d 

P ( $ )  = G { h ' 4 2 7 4 3 }  

corresponds m a mode in which the ground state moves along the $ duecfion within 
the ground-state manifold, and p( $) is the eigenvector of A( q = 0 )  at the ground 
state {&,&,&} with zero eigenvalue (at anisotropy A > 1, p depends on the value 
of $, while for A = 1, P ( $ )  {l,  1,l)); and the eigenvector of B ( q  = 0) with zero 
eigenvalue corresponds to a mode in which the ground state rotates about the z-axis 
within the ground-state manifold. 

The stable ground-state spin configuration at linite temperature is the one that 
minimizes the bee energy 

= @NEo + N In(rr@) + $ z [ l n  det A ( q )  t In det E ( q ) ]  (3) 

if we only keep the expansion up to H,. In the frustrated vector-spin systems that 
have been studied before [6, 12, 13, 3, 21, the free energy Fo shows a dependence on 
the ground-state configuration, ie. the thermal-fluctuation selection effect emerges at 

9 
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the order of harmonic excitations (which is the last term in (23)). However, in this 
model, though each of the three eigenvalues X I A ) ( q )  (X$?(q)) (where fi  = 1,2,3 
is the index for eigenvalues) of matrix A ( q ) ( B ( q ) )  has dependence on +, there 
is a perfect cancellation among the logarithm of the three eigenvalues so that the 
determinants 

Q Sheng and C L Henley 

det A(q)  = X $ A ) ( q ) X ~ ) ( q ) X ~ ) ( q )  

det B ( q )  = X ~ ’ ( q ) X $ B ’ ( q ) X $ ? ( q )  

and 

are independent of the value of [I]. As a result, the free energy in (23) is constant 
for all the ground-state spin configurations, i.e. the non-trivial degeneracy of ground 
state does not break down in harmonic excitations. In order to see the thermal 
selection effect, we need to go to higher orders. 

3. Higher-order interactions 

3.1. Diverging high-order contributions porn thennal fluctuations 

As we know from the introduction, the non-trivial continuous degeneracy usually 
does not persist into the non-zero temperatures because thermal fluctuations have the 
effect of reducing the degeneracy into the discrete symmetry that the Hamiltonian 
possesses. Usually the thermal fluctuation selection effect takes place at the lowest 
non-trivial perturbation expansion (quadratic order). This system, however, has an 
additional ‘pseudo-higher symmetry’ so that there is no broken symmetry in the 
harmonic excitations. Based on our belief that there must be a symmetq-breaking 
in this system, we continued the perturbation expansion of the free energy to the 
next non-trivial order: O ( p ) ,  Le. terms from the third and fourth order in the 
Hamiltonian. 

The third term is 
1 

H3 = 5 [J1)(S1r 41; s2, q2; s3t43)64s,(91)64) . l (q2)6463(4s)  

+ ~ ( ~ ) ( s , , q , ;  s2,q2; s3, q3)ae,,(q1)6e.~(~,)a+~,(q3) 

91 ,q1 ,93  

(24) 
where 
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where 

In these equations, si are sublattice indices 1, 2 and 3. 
’Iteat H3 and H4 terms perturbatively, 

F = F~ - ~ ~ n [ ( e - B ~ l ) ~ ( e - B ~ ~ ) ~ ]  

where Fo is the free energy to the order of harmonic excitations, (), is the average 
over the harmonic excitations: 

(O), I d68,,(q)d6+,(q) sin B,0e-B*2 
‘I Js*‘ 

I1 d6Q,,(q)d6+s(q) sin 03e-BHz ) - l .  (29) 

Using the cumulant expansion the free energy is 
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After the integration over BZ in equation (32). we find numerically that the integrands 
coming from H i  and H4 both have singularities at q + 0 that lead to logarithmic 
divergence and the singular parts do not cancel. The divergence disappears in the 
limit of A - 1. More specifically, the integrations of 6 fluctuations (the fluctuations 
within the plane of the ground-state comiguration) diverge logarithmically with the 
size of the system (infrared divergence); while the integrations of 0 fluctuations (the 
fluctuations out of the plane) do not have singular behaviour. The leading divergent 
behaviour of (32) is 

Q Sheng and C L Henley 

where det A(q)  = Dq2 + O(q4), A is of order unity and g(+, A)  has a dependence 
on +as g1 +gzcos(6+) with g2 > 0. In the limit of A t l ,  g ( + , A )  -0. So the 
resultant free energy is divergent but varies with the ground-state configurations. 

3.2 Seff-enew and self-consistent equation 

Though the free energy is divergent, the perturbations around different ground-state 
spin configurations generate different prefactors ( g ( + ,  A )  in equation (33)) which 
multiply to a common logarithmically divergent quantity. We therefore interpret this 
as a sign of this system having thermal selection effect. This degeneracy-breaking 
leads to 'mass generation' (or seff-energy) in our theory, Le. the two-point Green 
function 

G(q) = IG;'(q) + C(q)l-' (34) 

where G(q), Go(q) and C ( q )  are 6 x 6  matrices. Here C ( q )  is the self-energy matrix, 
the sum of all one-particle irreducible graphs of G(q) [U]. To the order of one-loop, 
the graphs in figure 2 appear in C ( q ) .  

-0-0 (a) (b) 

Figvrc 2 Graphs used to calculate E(q) io the order of one-loop. Contributions from 
(a) H: and (b) HI. 

Since the 0 fluctuations do not have singular behaviour, the major contribution 
to the thermal selection is &om the 4 fluctuations, i.e. in-plane fluctuations. So this 
system behaves the same way as an XY system would in the thermal selections. We 
therefore only concentrate on the in-plane fluctuations. 

We can write out the expression for C(q)  from the graphs in figure 2 .  The result 
is 
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In particular , at q = 0 ,  

where we have dropped superscript + for the two-point Green function. The self- 
energy is of order O(T),  which is quite small in the temperature range in which we 
are interested. For most of the Brillouin zone, the self-energy matrix is very small 
compared to A(q) .  Only for sufficiently small q such that det A(q)  - O ( T )  does 
C ( q )  have a dominant role. Therefore, we made an assumption that the self-energy 
is independent of q, ie. 

E ( q )  Y C(q = 0) C. (37) 

Furthermore, we assume that C is non-zero only in the subspace of zro-mode 
(the ground-state spin configuration subspace). 

= oK$)X+)  (38) 

where a(+) is the normalized eigenvector of A($ ,q  = 0) with zero eigenvalue (see 
equation (22)). 

Keeping terms in (36) consistently at the order of one-loop, we have 

with 

G(q) = [ 4 n )  + C~GGI- ' .  (40) 

h we see h m  the previous section, the long-wavelength fluctuations make the 
major contributions to the thermal selection in this system. This is different from the 
other systems with normal thermal selection [6, 12, 3, 21. In the normal selection 
case (where the selection takes place at the order of harmonic excitations), the 
fluctuations on all different wavelength scales have equally important contributions to 
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the selection, in which case the short-wavelength fluctuations are important in these 
systems. So it is important to sum Over the contributions from the fluctuations of all 
the wavevectors in the Brillouin zone. In our system, however, the long-wavelength 
fluctuations are the dominant contribution to the selection. So we can neglect the 
contributions from the short wavelength fluctuations, and only sum over a small 
neighbourhood of q = 0. 

Keeping the leading-order terms on the right-hand side of (39), we obtain the 
equation to be satisfied by U 

Q Sheng and C L Henley 

and 

where C, and C, depend on both .rl, and A, ie. C, = Cl(+, A )  and C, = C,($, A), 
and D only depends on A. With the approximation (42), we have 

det(A(q) + U @ )  = Czu + Dqz + O(q4) (42) 

(43) 
where A is of order unity. Equation (43) gives a self-consistent equation for U.  The 
solution to equation (43) has singular dependence on temperature. It has leading 
behaviour as 

U - S T 1  In TI. 
2 0  

Now the selecrion parf of the free energy is 

3.3. Numerical results 
For ked A, we numerically evaluate C , ( $ , A ) ,  C,(.rl,,A) (see equations (41) and 
(42)) and D for selected values of $. We find that the quantity CIC,/Dz can be 
fitted very well by the function 

with a. and a6 both being positive and Adependent. Therefore the selection free 
energy 

a. + as cos 6$  (46) 

. .. 

Therefore, thermal fluctuations select the ground-state coniiguration in which 
cos6$ = -1, Le. the spins on one of the sublattices lie perpendicularly to the 
easy axis. For the case of A = 2, C,Cz/Dz  was calculated for 10 values of $ and 
fit to the form (46). The result is 

F =  T)2(0.07 + O.O2cos6$). 
877 
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4 Quantum selection 

TJ calculate the quantum selection term, we must first find the spin-wave spectrum 
w,(q)  for every possible state of the ground-state manifold. Then the free energy is 
calculated from the following formula (to harmonic order only): 

the first term is the zero-point fluctuation energy, the second term is the thermally 
dependent prt In contrast to the thermal case (section 3). we already Iind a selection 
effect at harmonic order. Quantum selection has previously been considered only in 
exchange-coupled systems by this method [6, 16, 171 or by a cruder one [18]. 

4.1. Spin-waves 

Quantum fluctuations are governed by the equation of motion: 

dS 1 
dt  iii 
- = -IS, NI 

where [S, HI is the commutator, and H is the Hamiltonian (1). For large quantum 
number S, each spin can be described chsically by its two spherical angles {+{,Eli}. 
In spherical coordinates, the semi-classical equations of motion are 

where the dot means derivative with respect to time, i = 1,. . . , N (N is the number 
of the spins in the system). Expanding the equations of motion about a ground-state 
configuration {ai = T / Z , + ~ } ,  keeping only the linear order in the spin deviations 
{&bj, M i } ,  we obtain 

hS6bi = - . J ~ [ ( A c o s $ ; ~ o s + ~  +sir1+;s in+~j)6+~ 
(j J 
- ( A  sin 4; sin +j -I. cos +; cos +j )6$i ]  

Fourier transforming the equations of motion (52) and using equations (18) and 
(1% we get 
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and 
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with A(q)  and B ( q )  the 3 x 3 matrices defined in (18) and (20). The eigenvalues of 
the non-Hermitian matrix n(q) occur in imaginary pairs 

i X , ( q )  = iihwv(q)S/2J 
with w,(q) E Real (U = 1, 2, 3 is branch index). It can be verified that 1191 all the 
frequencies w,(q) are real, if the Hessian matrix 

is positive semidefinite, ie. the state that Hamiltonian is expanded about is a local 
minimum. 

4.2. Quantum selection results 
The set of ground states selected by quantum fluctuations is determined by the first 
term in (49), 

For each selected II, (with fixed A), this quantity is evaluated numerically and the 
result is found to he fitted very well by 

Eqm ~3 (bo - b 6 c o s 6 + ) ( J / S )  (57) 
where b, and b, are both positive quantities which depend on the anisotropy A. 
Therefore, the quantum fluctuations select the set of ground-state configurations in 
which cos6+ = 1, which is opposite to what the thermal Euctuations selectt. For 
the m e  of A = 2, equation (56) was calculated for 10 values of + and were lit to 
the form (57). The numerical result is 

E q , ~ ( 2 . 3 8 - 0 . 0 2 c o s 6 ~ ) ( J / S ) .  (58) 
We can conveniently model the ground-state selection by including a phenomeno- 

logical biquadratic interaction in the free energy [6, 2, 171 

(ij) 
6Hbiq = - K = y ( S i ' S j ) 2 .  (59) 

It was argued in previous work [6, 2, 171 that quantum selection favours K > 0, Le. 
collinearity. It can be checked by a straightfonvard calculation that the biquadratic 
energy for cos 610 = 1 states is lower than cos SII, = -1 states by 

AE, ,  = 2h' (i,:>" - > O .  

This agrees with our current result b, > 0 and furthermore indicates b, - ( A  - 1)3 
near A = 1. 
t In the limit where k s T S I J  -+ 0 ,  we waluated the contribution from the m u d  term in equation (49). 
It is found 10 fawur the typc I1 states (oppasite 10 what the 6rsl term selects, which is typc I state6). 
The seledion slrength from the xmnd term is approximateb c 6 T ( T S ) * .  In the case of A = 2, c6 w 4. 
Howwer, in the Limit where ke T S /  J is large (see sation 4.3.), the selection aied goes may. 
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4.3. Rekationsh@ between quantum and thermal calculatwm 
In the limit 

kBTS/J IxMI (a) 
where IX,( is the largest eigenvalue of the frequency matrix in (53), the second term 
in (49) becomes 

+ k B T x [ i l n  d e t Q ( q ) ]  
25 = kBTN In - S k B T  

9 

+ ~ l c , T ~ [ l n d e t A ( q ) + I n d e t B ( q ) ] .  (61) 
25 = k B T N  In - 

SkBT 
9 

Comparing this result with (U), we see that in the limit of large spin quantum number 
S (or large temperatures)t, the thermal fluctuation selection at the order of harmonic 
excitation is recovered by equally populating all the quantum spin excitation levels. 
This is Vue for any system in the harmonic limit It can be show mathematical& 1191 
that the matrix E of the classical quadratic energy has the same determinant as that 
of the matrix from which the spin excitation frequencies are obtained. Therefore 
equally populating all the spin excitation levels leads to the classical free energy as is 
obtained from the classical quadratic energy. 

5. Ellect of random site dilution 

The Hamiltonian for the system with site dilution is 

H = J C E ; E ~ ( A S ~ , S ~ ,  + SiySjy + Sj,Sj,) (62) 
(4 

where ci = 1 or 0 depending on whether the site i is occupied or not. E; are random 
and uncorrelated with each other, with (ei) = 1 -6p, where 6p is the diluted fraction. 
The interactions are only between the spins that are nearest neighbours. The dilution 
does not change the global rotation symmetry around the easy axis (z-axis), but lifts 
the non-trivial degeneracy in which the {&) vary continuously. 

In the systems studied before [4, 2, 31, only pais of removed spins can create ran- 
dom fields, because in any ground states of those systems, every site is equivalent to 
every other site by some symmetry operation, i.e. the local fields are site-independent. 
Removing an isolated site eliminates an equal numbe1 of bonds in evely bond direc- 
tion, and therefore has zero net contribution to the random field. 

t Also in this limil, Eqm F,herm.,, so we neglect Esm. 
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In this anisotropic m model, on the other hand, the local fields are site- 
dependent in any ground-state configuration: no symmetry operation exists that can 
transform the local fields on different sublattices to each other. Also, there are three 
kinds of bonds that connect nearest neighbours in the lattice: b{1,2),  b{2 ,3}  and 
b{3,1}. Each site is connected to its nearest neighbours through two kind of bonds; 
for example, a site in sublattice 1 is connected to its nearest neighbours by bonds 
b{1,2) and b{3,1}. Therefore removal of an isolated site will leave unbalnnced 
bonds. It favours the states in which the excessive bonds have the minimum energy: 
the spins that are connected by the excessive bonds point along the easy axis with 
nearest neighbours being antiparallel, while the the spins on the sublattice in which 
the diluted spin sits lie perpendicular to the easy axis. Thus dilution on a single site 
has the effect of selecting the same subset of ground states as the thermal fluctuations. 
Notice that the reflection about the y r  plane is still a symmetry. Thus the random 
site dilutions create discrete random uniaxial anisotropy fields with the favuured axis 
being one of the three symmetry-related directions in $ space, depending on which 
sublattice the diluted spin was on. Microscopically, the free energy due to the random 
site dilution is 

- uo cos ~(11- @)) = - L~ 2 0  [ , i2(+-+!9 + , -~N+-+?))I  (63) 
i i 

where $?) E { ~ / 6 , ~ / 2 , 5 n / 6 ) ,  and 

u o - ( A - l ) J .  (64) 

Summing over a macroscopically small but microscopically large volume AV around 
r, we obtain the random anisotropy in the continuum limit: 

where &(r)  labels the macroscopic easy axis. By the law of large numbers, the 
right-hand side of equation (65) becomes a Gaussian random variable. So & ( T )  is a 
uniformly distributed random variable (31, and 

(v (r )2)  - v,ZN (66) 

where N m 6 p A V  is the number of impurities. 

uum limit is 
Therefore, the free energy density due to the random site dilution in the contin- 

The correlation length should scale as the mean separation between the impurities 

E ,  - (6p ) - ’” .  (68) 
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6. Phase diagrams 

It is complicated to describe the phase diagram since there are four non-trivial param- 
eters: the anisotropy ratio A, the reduced temperature T/J ;  the occupied fraction p;  
the spin number S for quantum spins. (The external field would be another parame- 
ter, but we will not go into it here.) Based on the results of the previous sections, we 
can now give some qualitative speculations about the phase diagrams of this system. 

’Ib be more conventional, we now let the easy axis be the z-axis. ’Ib describe the 
rotational symmehy-breaking around the easy axis, we introduce the ‘chiral’ order 
parameter [l] 

ffi=(S; x sj + sj x s, + s, x Si) 

where i, j ,  k are arranged counter clockwise for upward elementary triangles. In any 
classical ground state, ffi lies in the zy plane, we let @ be its angle within the z y  
plane. 

Combining equations (45), (57) and (67) from previous sections, we get the effec- 
tive continuum free energy density 

where p, x J are the spin staesses;  h, is the selection free energy (h, > 0 in the 
case of quantum selection and h, < 0 in thermal selection). 

61. Pure system 
’Ib the extent that (70) is valid, then, the $ and @ degrees of freedom decouple. 
The continuum theory for the II, degree of freedom in (70) is identical to that 
of a ferromagnetic XY model, with II, as the spin angle. In the language of the 
ferromagnetic XY model, the h, term is a six-fold anisotropy, and the last term is a 
random uniaxial anisotropy. By means of this mapping, we can apply previous results 
on XY models to the phase Wansitions in our caset. 

61.1. "rial rransibbns. We first consider what transitions are associated with 
the $ variable on the basis of (70), viewed as a mapping to a ferromagnetic X Y  
model with six-fold anisotropy. At high temperatures the system is disordered by 
$ vortices; at low temperatures the anisotropy is relevant and the system becomes 
locked into long-range order with six discrete states. Jos6 et af [ZO] showed that, for 
p-fold anisotropy for p > 4, there is a ‘floating’ phase between these with power-law 
correlations. The upper transition TN,, identified by Miyashita and Kawamura 111 
is a Kosterlitz-Thouless (m) transition associated with ordinary vortices in the $ 
degree of freedom, above which the system is in a fully disordered phase; in addition 
there must be a lower transition T, above which the discrete six-fold long-range order 
gives way to Boating quasi-long-range order (in other words, between TNI and T, the 
six-fold selection is irrelevant in the renormalization group sense and the continuous 

t W have done some of the calculations in the paper on the triangular XY antifemmagnet with exchange 
anisorrow (J== # Jvu). This also shows the Same degeneracy not only of the ground states but of the 
first O(T) selection term. The principal difference is that the mntinuous symmetry of lhe 0 variable is 
replaced by a discrete Ising-like ymmeliy, wrresponding to positive or negative values of the chirality K 

just as in the isotropic uiangular XY antifemmagnet. 
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$ degeneracy behaves as a continuous S, qmmehy). On the other hand, there 
is another tcr transition TNz [l] associated with binding-unbinding of ordinary @ 
vortices below which IC have quasi-long-range order. 

In the case of large A, the fluctuations of IC out of the zy plane are very small 
111. In this case, the $ and @ degrees of freedom are well dehned, and p$ - A and 
p: - 1 /A (the spin stiffnesses can be obtained from the eigenvalues of the matrices 
(18) and (19) in the long-wavelength limit q + 0). Thus the energy associated with the 
@ ordering is much smaller than that associated with the 11, ordering. The appearance 
of @ vortices imposes a ‘finite size effect’ on the selection free energy when T > TN2, 
Le. the longest wavelength contributing to the selection term is the order of the mean 
separation between the vortices. Thus the strength of the symmetry-breaking field h, 
is renormalized smaller hy the presence of the CP vortices. Nevertheless, h, is always 
relevant once below T, no maffer how weak h, Lr [20, 211. According to the theory 
of Kr aansitions, TN, a p$’,TN, a pf; furthermore it is well known [20, 211 that 
T, x (4/9)TN1 in the limit where the six-fold anisotropy is weak and the vortex core 
energy is large. Therefore we expect the sequence 

TNI > T6 > TN. (71) 
at large anisotropy A > 1. 

In the limit of A + 1, the fluctuation of IC is nearly isotropic. Now p$’ and pf 
are greatly renormalized by the fluctuation of IC out of the z y  plane. It is expected 
that TN, and TN2 merge into Tz2 at A = 1 where the system undergoes the Kr 
transition mediated by 2, vortices 11, 81. But we have not investigated the behaviour 
of T6 in this limit. It is not obvious, based on the result we have so far, whether T, 
approaches to Tz, along with TNI and TNI or whether T6 -+ 4/9Tz,. 

61.2. Competition behveen fhermal and quantum seleclion. Since the set of states 
selected by quantum fluctuations is the opposite of what the thermal fluctuations 
select, we expect there is a phase transition at the transition temperature TE,, roughly 
where the thermal selection amplitude equals that of the quantum selection. The 
phase transition across TE, ought to be first order @y the usual Landau symmetry 
criterion), where (cos 6 ~ 4 ~ )  changes from 1 to -1 as T increases (Le. transition from 
type I to type 11). S i e  the quantum selection is weaker for larger S, we expect that 
TE, decreases with increasing spin quantum number S. 

For the case where the anisotropy A is large, a rough phase diagram for the pure 
system is sketched in figure 3. In the limit of A - CO, the spins are all close to the 
z-axis. In this king limit, the type I states approach those of an king model in which 
one sublattice is up and two are down; the type I1 states approach those of an king 
model in which one sublattice is up, one is down, and the other is disordered. 

61.3. Ferromagnefic properfies. In this subsection, we will consider the possible devel- 
opment of a ferromagnetic moment for the cases of quantum and thermal selections. 

For T E (T6,TNI), the system is in a floating phose, where both 11, vortices and 
11, symmetly-breaking field h, are irrelevant. Since each magnetic unit cell has net 
moment, the ferromagnetic susceptibility in the zdirection diverges exponentially fast 
on approaching T6 from above or TN, from below, and remains infinite throughout 
( T6 I TN, [20, 221. 

For T < T6, the system is locked into one of the discrete states selected by the 
symmetry-breaking field. In the case of type I phase, there is Iinite ferromagnetic 
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1 A 

F@re 3. Phase diagram for pure ( 6 p  = 0) system in the case large anisotropy A (see 
the text). ne phase boundary TA shifts lower Cor larger S. 

magnetization per magnetic unit cell in the rdirection: for T > TN2, there is no 
order in sy plane; and still for T < TN2, the magnelic moment in the z y  plane is 
purely antiferromagnetic, so there is no divergent ferromagnetic susceptibility in the 
zy plane. In the case of the type I1 phase, there is finite ferromagnetic magnetization 
in the zy plane per magnetic unit cell. Thus for all the temperatures T < TNz 
the ferromagnetic susceptibility in the xy plane is divergent (this is only hue for 
fairly large spin S when it is possible that TA < TN2 so that there exists a range 
over which thermal selection dominates). Because there is no net magnetic moment 
along the z-axis in the type I1 states, the ferromagnetic susceptibility is mite. The 
contrast in behaviours ought to make it easy to distinguish types I and I1 behaviour 
experimentally. 

61.4. 'Ihe recursion relation for the 
symmetry-breaking field is [ZO] 

Finite-siTe efect on the locking runsirion. 

[ $1 ' ~r bX@(T) [ $1 (72) 

with 

(73) &(T)=2-9 -  kB T 
Jea 

where b is the scale factor, .IeR is the effective coupling. For a system of linite size 
L, in order to see the locking transition T,, there should be 

(74) 

In the limit of S + CO, ie. the classical spin system, the symmetry-breaking field h, - 
(Tln T)z .  Fbr the case A = 2 and system size L = 24, combining equations (48) 
and (74), we find that to see the locking transition, the temperature should be at 
least T > 25, which & well above the KT transition temperature TNI % 0.66.1. This 
explains why Miyashita et nl did not see T, in their simulations 111. 
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62 Random field effects 

We now turn to the diluted system ( 6 p  > 0). which has effective random anisotropies 
(section 5). Here we suggest their consequences for the phase diagram. 

62.1. Behaviour al T = 0. We consider only the case 5’ < CO so that the quantum 
selection always dominates and approaches a finite value h, > 0 in the l i t  T - 0. 

The effective random anisotropies will favour different different values of + in 
ditferent regions. Consequently the system breaks up into domains separated by 
domain walls with the wall thickness 

Q Sheng and C L Henley 

L-@X (7s) 

and the energy per unit length of a domain wall 

E ,  = ~ / d ’ h e  (74) 

Note that as A - 1, we have h, -, 0 and 1 ,  -CO. 

We now apply the Imry-Ma [23] argument for this system. Consider now if we 
mnstruct a state in which 11, varies over a length scale (domain size) 1. If 1 < 1, it 
is not meaningful to consider discrete domains, so + just wanders continuously with 
V11, - 1 / l .  Hence the free energy per area is 

F, - p t l l ’ .  (77) 

F, - E , / l -  (p th , ) ’ /* / l .  (78) 

If 1 > l,, then we have well defined domains of discrete selected $t, and 

This is to be compared with the random energy, which can be easily worked out to 
be 

Frandom(l) = vO(6P)”2 /1  = vO/(lcv) (79) 
per site. The mrrelation length of the discrete order 
minimizes 

is the value of 1 which 

4 + c m d o m ( l ) .  

For small 6 p ,  the random energy is small and this must correspond to the case 
where the domains are large, when it is appropriate to use the discrete approach 
(78). Then both competing terms scale as 1/1, indicating marginal behaviour, and we 
must quote the more sophisticated reasoning which shows the randomness disorders 
the discrete model at sufficient distances; by Binder’s argument [24] (we replaced the 
lattice mnstant by 1, since the smallest possible length scale in the discrete regime 
is the wall thichess), 

t Al T = 0. lhe qmmetry-breaking field he is always rzlwanl. ?herefore the F t e m  is locked in10 one 
of the discrete stales selected ty ha. Due to the random anisolmpy field, the syslem breaks up into 
domains Lo minimize lhe random energy Frmdom. 
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6 2 4 .  Nature of ordering in mndom states. Note that the effective random axis is 
uniaxial and never distinguishes states with rl, + rl, + P. In fact, this is not just 
coarse-grained, it is present in the original diluted microscopic model since we have 
an exact spin inversion symmetry. Consequently, we always have two degenerate 
ground states related by a discrete symmetry. According to the picture of Fisher and 
Huse [26], this is the essential feature of an Wig spin-glass, so we can speculate 
that the ground state is like that of a two-dimensional king spin-glass. The spin-glass 
does not appear as a separate phase on the phase diagram since in two dimensions 
the transition is at zero temperature; however, as T -+ 0 the nonlinear susceptibility 
should diverge with the same power law l/TT as in king systems 121, and the spatial 
decay of the corresponding (Edwards-Anderson) correlation function should have the 
same power-law decay as in king spin glass modelst. 

Q Sheng and C L Henley 

7. Summary 

We have shown (section 3) that thermal fluctuations do have an ordering effect by 
selecting among the classical ground states in a triangular king-Heisenberg antifer- 
romagnet. In our system, the thermal selection free energy is dominated by long- 
wavelength fluctuations, in contrast to all previously considered systems [6, 12, 13, 
2, 31, in which short-wavelength fluctuations dominate. Since the symmetry-breaking 
happens at higher orders than the harmonic excitations, the selection effect is quite 
weak (its temperature dependence has leading behaviour (Tln T)2) .  While thermal 
selection chooses type I1 states, quantum selection favours type I states (section 4.2); 
in principle this competition may lead to a phase transition (section 6.1.2). Thus, as 
is typical for selection out of a degenerate manifold, in either case the continuous 
degeneracy is reduced to a discrete (six-fold) symmetry, in addition to the continuous 
symmetry which remains from the Hamiltonian. (In lhe process of the quantum cal- 
culation, we also show the relationship between the formalisms used for the classical 
and quantum selections (section 4.3), mlid for quite general continuous spin systems.) 

Then in section 5, we found that random dilution introduces an effective random 
anisotropy acting in the degenerate manifold. As in the dipolar honeycomb model 
[3] a true two-fold symmetry is still preserved. However, the disordering effect for 
site dilution is stronger in the AFT king-Heisenberg model than in [3], because the 
bond energies at different sites are not equivalent (it is analogous to the enhanced 
effect of bond dilution compared with site dilution in usual models where the sites 
are equivalent) [4]. 

Since the thermal (quantum) fluctuations introduce the six-fold symmetry-breaking 
field h,, it is expected that there is a KT phase transition T, below which the system 
is locked into one of the six discrete states selected by h,. Therefore we propose 
(section 6.1.1) that in a system with asy-axis anisotropy, there is anofherphase (rami- 
twn T6 in addition Io h e  WO successive phase IransiIions TNI and TN, identilied in 111. 
For systems with large easy-axis anisotropy A > 1 and large enough spin quantum 
number S, we expect the sequential phase transitions TN, > T6 > TE, > TN2 upon 
lowering the temperature. 

On the other hand, when the Ising-Heisenberg system is doped with non-magnetic 
impurities, the site dilutions produce a random anisotropy field that couples to the 

t Even if 6p > 6p,., M lhal we must mnsider $h a mntinuou rather than a discrete degree of freedom, 
we still apecl the universality dass U) be that of an king spin-glass. 
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degeneracy degree of freedom. Consequently there are no real phase transitions 
associated with this degree of freedom. Nevertheless there is a crossover between 
weak and strong random field behaviour characterized by whether or not there are 
domains within which there exist one of the six discretely selected states (sections 6.21 
and 6.2.3). hrthermore, it turns out that the disordering of the other degrees 
of freedom does not frustrate the ordering of the in-plane components; since the 
rotation symmetry about the easy axis is preserved upon site dilution, the m transition 
of these components is apparently not destroyed (section 622). Finally, the inversion 
symmetry is also preserved, so that the discrete degrees of freedom in such a system 
are expected to behave as a two-dimensional king spin-glass as T + 0 (section 6.2.4). 
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